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Abstract. We construct exactly solvable models with arbitrary filling for any number of
dimensions in which an excitonic phase arises. The ground-state and thermodynamic properties
are investigated. There is a parameter region in the ground-state phase diagrams where an
excitonic phase is sandwiched between an insulating phase and a semimetallic phase.

In 1961 Mott proposed that, under certain circumstances in a semimetal, holes and electrons
can form excitons, and they then condense, thereby leading to anexcitonic phase[1]. Since
then this has been a subject of considerable experimental and theoretical interest [2]. For
example, there is a recent proposal that a large droplet of a high-density excitonic phase can
be stabilized in a suitably arranged quantum well structure where the electrons and holes
are spatially separated [3]. To shed light on the excitonic phase, here we propose models in
which an excitonic phase arises in certain parameter regions. Although our models involve
some idealization of the real situations, they have the attractive feature of being exactly
solvable. We shall obtain the ground-state and thermodynamic quantities explicitly. Some
of Mott’s proposals will be confirmed exactly. Thus it is possible that our model describes
a universality class proposed by Mott. From our results one can gain much insight into the
universal properties of an excitonic phase.

We begin by considering a two-band model with interband interactions described by the
Hamiltonian

H = Hkin + Hint (1)

Hkin =
∑

k

ε(v)(k)c
(v)†
k c

(v)
k +

∑
k

ε(c)(k)c
(c)†
k c

(c)
k (2)

Hint = −U

N

(∑
k

c
(c)†
k c

(v)
k

)(∑
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′
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(v)†
k′ c

(c)
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(3)

where c
(v)
k and c

(c)
k are the fermion annihilation operators for the valence band, and the

conduction band, andε(v)(k) and ε(c)(k) are the energy dispersions of the valence band
and the conduction band, respectively. The momentum vectork takes values in thed-
dimensional Brillouin zone. The interaction HamiltonianHint represents the interaction
between electrons in the conduction band and holes in the valence band. We impose the
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Figure 1. The band structure, and classification of the
pairs.

constraint on the band structure that the valence band and the conduction band are ‘parallel’,
i.e.

ε(c)(k) = ε(v)(k) + G (4)

whereG is independent ofk (see figure 1). We setG andU positive and∼O(N0), where
N is the number of momentum points in the Brillouin zone. The spin degrees of freedom
are neglected for simplicity, since we do not consider spin-related quantities here.

The main part of the diagonalization consists in two steps: (i) showing that the kinetic
term Hkin and the interaction termHint in (1), (2), and (3) act on different Hilbert spaces;
(ii) reducing the problem to a quantum spin system which is exactly solvable.

For a fixed number of electrons, define setsS andD as follows (see figure 1): consider
a pair which consists of a momentum pointk in the valence band and in the conduction
band. We denote the pair byk, wherek takes values in the Brillouin zone. Denote the set
of ks which are singly occupied asS. The setD consists ofks which are doubly occupied
or empty. Note thatS ∩ D = ∅ andS ∪ D = the Brillouin zone. The choice ofS andD
is not unique. Let us denote a realization ofS and D by an indexi. Introduce a Hilbert
space spanned by the basis vectors

c
(v)†
l1

· · · c(v)†
lNv

e

c(c)†
m1

· · · c(c)†
mNc

e

|0〉Si
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c
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)(c
(v)†
k2

c
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)(c
(v)†
k3

c
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k3
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kM

c
(c)†
kM

)|0〉Di
(5)

where l1, . . . , lNv
e
, m1, . . . , mNc

e
, and k1, k2, k3, . . . , kM take values in the Brillouin zone

with {l1, . . . , lNv
e
, m1, . . . , mNc

e
} = Si , and k1, k2, k3, . . . , kM ∈ Di . Note thatNv

e (Nc
e )

is the number of electrons in the valence (conduction) band inSi , andM is the number
of doubly occupied pairs inDi . Nv

e , Nc
e , and M can be varied. Here the state|0〉Si

is
defined byc(c)

k |0〉Si
= 0 (k ∈ Si ) andc

(v)
k |0〉Si

= 0 (k ∈ Si ). The state|0〉Di
is defined by
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c
(c)
k |0〉Di

= 0 (k ∈ Di ) andc
(v)
k |0〉Di

= 0 (k ∈ Di ). The direct sum of the Hilbert spaces with
all the possible setsSi andDi is the Hilbert space that we consider, which is equivalent to
the Hilbert space with a fixed number of electrons.

Let us introduce an operatorPj which is a projection operator in the Hilbert space
whereS andD are fixed asSj andDj , and

∑
j Pj = 1, where1 is the identity operator.

The Hamiltonian can be written as

H =
(∑

j
Pj

)
H

(∑
j
Pj

)
=

∑
j
PjHPj . (6)

From relation (4), we have

PjHPj = PjHkinPj + PjHintPj

= Pj (1 ⊗ HI)Pj + GNc
e + Pj (HII ⊗ 1)Pj + constant (7)

whereHI andHII are
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Here the essential feature revealed is that the kinetic term and the interaction term act on
different Hilbert spaces, i.e. ‘separation’ of the Hamiltonian. In the following we shall
neglect the irrelevant constant term in the Hamiltonian.

Now we shall reduce the problem to diagonalization of a quantum spin system. Here
the SU(2) algebra hidden in spinless fermions in the two-band system plays a crucial role
(the hidden SU(2) algebra was used in [4–7] in different contexts). Let us define the ‘spin’

operatorsŜ+
k = Ŝx

k + iŜy

k , Ŝ−
k = Ŝx

k − iŜy

k , and Ŝz
k as Pj c
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wherek and k
′

are in Sj . Thus Ŝx
k , Ŝ

y

k , and Ŝz
k (k ∈ Sj ) are the components of ans = 1

2
quantum spin. Then we have

Pj (HII ⊗ 1)Pj = Pj (Hspin ⊗ 1)Pj (11)

whereHspin is given by

Hspin = −U

N

( ∑
k∈Sj

Ŝx
k − iŜy

k

)( ∑
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′ ∈Sj

Ŝx

k
′ + iŜy
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(Ŝx − iŜy)(Ŝx + iŜy)
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N
{(Ŝ)2 − (Ŝz)2 − (Ŝz)}. (12)

Now we can identifyk as a ‘site’ on which ans = 1
2 quantum spin is defined. In the spin

language, a spin is ‘up’, if the valence band part of the pairk is occupied, and a spin is
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‘down’, if the conduction band part of the pairk is occupied. Note that, sincek takes values
in Sj , all of the pairs considered are singly occupied. Now diagonalizeHspin, which can
be identified with a quantum spin Hamiltonian (s = 1

2). Define |S, Sz〉 by an eigenstate of

(Ŝ)2 and Ŝz which satisfies(Ŝ)2|S, Sz〉 = S(S + 1)|S, Sz〉 and Ŝz|S, Sz〉 = Sz|S, Sz〉. The
energy is specified byS andSz (see (12)). There is, however, non-trivial degeneracy which
is given by

(2Smax)!(2S + 1)

(Smax − S)!(Smax + S + 1)!

whereSmax is NSj
/2 andNSj

= the number of elements inSj . This degeneracy plays a
crucial role in the thermodynamic properties.

Figure 2. The ground-state phase diagram of the one-dimensional two-band model (model A),
whereε(c)(k) = −(W/2)cosk + W/2 + G/2 andε(v)(k) = −(W/2)cosk + W/2 − G/2. The
phase boundary between phase 2 and phase 3 was determined numerically. For example, an
excitonic phase is sandwiched between a band insulator phase and a semimetallic phase for a
range ofG/W along the dashed line.

Let us consider a state

|S, Sz〉 ⊗ c(v)
p1

c(v)
p2

c(v)
p3

· · · c(v)
pL

c(c)†
q1

c(c)†
q2

c(c)†
q3

· · · c(c)†
qM

∏
k∈Dj

c
(v)†
k |0〉Dj

(13)

whereL is the number of the holes in the valence band inDj , and M is the number of
electrons in the conduction band inDj . From the ‘separation’ of the Hamiltonian (7) and
the mapping to a quantum spin system (11), it can been seen that (13) is an eigenvetor of
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H with an eigenvalue

−U

N
[r2 − (NSj

+ 1)r + Nc
e (NSj

− Nc
e + 1)] + GNc

e −
L∑

l=1

ε(v)(pl) +
M∑

m=1

ε(c)(qm) (14)

where ther(0 6 r 6 NSj
/2, r: integer) are defined byNSj

/2 − S. The total number of
electrons is given byNSj

+ 2M. Varying the indexj , H is diagonalized completely.
Now let us consider the physical properties of the system in the thermodynamic limit

(N → ∞). For simplicity, we consider the half-filled case, namely,NSj
+ 2M = N . When

the interaction is absent, the system is an insulator or a semimetal, depending onG.

Figure 3. The density of states and the ground-state phase diagram of model B.

Let us consider the ground-state properties. The ground state is obtained by minimizing
the energy (14). The competition between the kinetic term and the interaction term gives
a rich phase diagram. We present the phase diagrams for two cases: (model A) a one-
dimensional two-band model, as shown in figure 2; and (model B) a system with a constant
density of states, which resembles that of the 2d systems (see figure 3). We find three
different types of phase as shown in figures 2 and 3. Introduce the order parameter1 [2]
to characterize the phases:

1 =
√

1

N2

∫
dx

∫
dy 〈ψ(c)†(x)ψ(v)(x)ψ(v)†(y)ψ(c)(y)〉 (15)

where the real-space field operators are

ψ(c)(x) = 1√
N

∑
k

eikxc
(c)
k

and

ψ(v)(x) = 1√
N

∑
k

eikxc
(v)
k .

The contents of the three phases are as follows.
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Phase 1: 1 = 0. The ground state is a band insulator as in the non-interacting case.
Phase 2: 1 = 0. The ground state is a semimetal as in the non-interacting case.
Phase 3: 1 = 1

2

√
1 − (G/U)2. The ground state is an excitonic phase.

Figure 4. The order parameter of the ground state forU/W = 1.1 for model A. One can see
that an excitonic phase is sandwiched between a band insulator phase and a semimetallic phase.

Note that there is a parameter region in model A where an excitonic phase is sandwiched
between an insulating phase and a semimetallic phase, which is the picture proposed by
Mott in 1961 [1] (see figures 2 and 4).

Next we consider the thermodynamic properties. For simplicity, let us take a system
with flat bands (ε(c) = ε + G/2, ε(v) = ε − G/2). The grand partition function is

Zgrand =
∑
L,M

06L+M6N

∑
r; integer

06r6NSj /2

NSj −r∑
Nc

e =r

C exp(−βE) (16)

whereC andE are defined by

C = N !

NSj
!L!M!

NSj
!(NSj

− 2r + 1)

r!(NSj
− r + 1)!

and

E = −µ(N − L + M) + L(G/2 − ε) + M(G/2 + ε) + GNc
e

− U

N
{r2 − (NSj

+ 1)r + Nc
e (NSj

− Nc
e )}.
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Figure 5. The temperature dependence of the order parameter forU = 2 for the flat-bands
model.

In the thermodynamic limit (N → ∞) the saddle-point method can be used. The chemical
potential is set asµ = ε and the system is half-filled. A direct calculation leads to analytic
forms of the thermodynamic quantities. For example,1(T ) is given by

1(T ) = 0.5

√(
y − 1

y + 1

)2

−
(

G

U

)2

(17)

wherey is the root of

logx = 1

2
UT −1(x − 1)(x + 1)−1 (x > (1 + U−1G)(1 − U−1G)−1)

and, if there is no solution,1 = 0. The free energy�(T ) per unit cell belowTc is given
by

�(T )/N = −2T (y + 1) + 2T
y

y + 1
logy − 1

4
U

(y − 1)2

(y + 1)2
− 1

4
U−1G2 + 1

2
G. (18)

As shown in figure 5,1(T ) ∼ (Tc − T )β (β = 1/2) near the critical temperature, and the
second-order phase transition occurs at a finite temperature. A more detailed study of the
thermodynamic properties will be presented elsewhere.

In summary, we have constructed exactly solvable models where an excitonic phase
arises in certain parameter regions. All of the eigenvalues and the eigenvectors were
obtained explicitly. The ground-state phase diagrams have interesting structures. Mott’s
proposal that an excitonic phase is sandwiched between an insulating phase and a
semimetallic phase was confirmed exactly. The thermodynamic properties were also
discussed. We found that a second-order phase transition occurs at a finite temperature.
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Although our results presented here are restricted to the cases where fully analytical
treatments are possible, it is straightforward to analyse more general cases—for example,
away from half-filling, and the thermodynamics for non-flat bands. For the more general
cases, the essential features such as the critical exponentβ and the topology of the ground-
state phase diagram do not differ, and they seem to lie in the same universality class as the
present case. They will be presented elsewhere.
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